Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add filters

Journal
Document Type
Year range
1.
Security and Communication Networks ; 2023, 2023.
Article in English | Scopus | ID: covidwho-20243671

ABSTRACT

Electronic health records (EHRs) and medical data are classified as personal data in every privacy law, meaning that any related service that includes processing such data must come with full security, confidentiality, privacy, and accountability. Solutions for health data management, as in storing it, sharing and processing it, are emerging quickly and were significantly boosted by the COVID-19 pandemic that created a need to move things online. EHRs make a crucial part of digital identity data, and the same digital identity trends - as in self-sovereign identity powered by decentralized ledger technologies like blockchain, are being researched or implemented in contexts managing digital interactions between health facilities, patients, and health professionals. In this paper, we propose a blockchain-based solution enabling secure exchange of EHRs between different parties powered by a self-sovereign identity (SSI) wallet and decentralized identifiers. We also make use of a consortium IPFS network for off-chain storage and attribute-based encryption (ABE) to ensure data confidentiality and integrity. Through our solution, we grant users full control over their medical data and enable them to securely share it in total confidentiality over secure communication channels between user wallets using encryption. We also use DIDs for better user privacy and limit any possible correlations or identification by using pairwise DIDs. Overall, combining this set of technologies guarantees secure exchange of EHRs, secure storage, and management along with by-design features inherited from the technological stack. © 2023 Marie Tcholakian et al.

2.
Digital Chinese Medicine ; 5(2):112-122, 2022.
Article in English | EMBASE | ID: covidwho-20239878

ABSTRACT

The Corona Virus Disease 2019 (COVID-19) pandemic has taught us many valuable lessons regarding the importance of our physical and mental health. Even with so many technological advancements, we still lag in developing a system that can fully digitalize the medical data of each individual and make it readily accessible for both the patient and health worker at any point in time. Moreover, there are also no ways for the government to identify the legitimacy of a particular clinic. This study merges modern technology with traditional approaches, thereby highlighting a scenario where artificial intelligence (AI) merges with traditional Chinese medicine (TCM), proposing a way to advance the conventional approaches. The main objective of our research is to provide a one-stop platform for the government, doctors, nurses, and patients to access their data effortlessly. The proposed portal will also check the doctors' authenticity. Data is one of the most critical assets of an organization, so a breach of data can risk users' lives. Data security is of primary importance and must be prioritized. The proposed methodology is based on cloud computing technology which assures the security of the data and avoids any kind of breach. The study also accounts for the difficulties encountered in creating such an infrastructure in the cloud and overcomes the hurdles faced during the project, keeping enough room for possible future innovations. To summarize, this study focuses on the digitalization of medical data and suggests some possible ways to achieve it. Moreover, it also focuses on some related aspects like security and potential digitalization difficulties.Copyright © 2022 Digital Chinese Medicine

3.
International Journal of Data Mining, Modelling and Management ; 15(2):154-168, 2023.
Article in English | ProQuest Central | ID: covidwho-20239813

ABSTRACT

Improving the process of strategic management in hospitals preparation and equipping the intensive care units (ICUs) and the availability of medical devices plays an important role for knowing consumer behaviour and need. This cross-sectional study was performed in the ICU of Farhikhtegan Hospital, Tehran, Iran for a period of six months. During these months, ten medical devices have been used 5,497 times. These devices include: ventilator, oxygen cylinder, infusion pump, electrocardiography machine, vital signs monitor, oxygen flowmeter, wavy mattress, ultrasound sonography machine, ultrasound echocardiography machine, and dialysis machine. The Apriori algorithm showed that four devices: ventilator, oxygen cylinder, vital signs monitoring device, oxygen flowmeter are the most used ones by patients. These devices are positively correlated with each other and their confidence is over 80% and their support is 73%. For validating the results, we have used equivalence class clustering and bottom-up lattice traversal (ECLAT) algorithm in our dataset.

4.
Expert Systems with Applications ; : 120639, 2023.
Article in English | ScienceDirect | ID: covidwho-20231118

ABSTRACT

Optimization problem, as a hot research field, is applied to many industries in the real world. Due to the complexity of different search spaces, metaheuristic optimization algorithms are proposed to solve this problem. As a recently introduced optimization method inspired by physics, Archimedes Optimization Algorithm (AOA) is an efficient metaheuristic algorithm based on Archimedes' law. It has the advantages of fast convergence speed and balance between local and global search ability when solving continuous problems. However, discrete problems exist more in practical applications. AOA needs to be further improved in dealing with such problems. On this basis, to make Archimedes Optimization Algorithm better applied to solve discrete problems, a Binary Archimedes Optimization Algorithm (BAOA) is proposed in this paper, which incorporates a novel V-shaped transfer function. The proposed method applies the BAOA to COVID-19 classification of medical data, segmentation of real brain lesion, and the knapsack problem. The experimental results show that the proposed BAOA can solve the discrete problem well.

5.
3rd International Conference on Electrical, Computer and Communication Engineering, ECCE 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2325190

ABSTRACT

The recent COVID-19 outbreak showed us the importance of faster disease diagnosis using medical image processing as it is considered the most reliable and accurate diagnostic tool. In a CNN architecture, performance improves with the increasing number of trainable parameters at the cost of processing time. We have proposed an innovative approach of combining efficient novel architectures like Inception, ResNet, and ResNet-Xt and created a new CNN architecture that benefits Extreme Cardinal dimensions. We have also created four variations of the same base architecture by varying the position of each building block and used X-Ray, Microscopic, MRI, and pathMNIST datasets to train our architecture. For learning curve optimization, we have applied learning rate changing techniques, tuned image augmentation parameters, and chose the best random states value. For a specific dataset, we reduced the validation loss from 0.22 to 0.18 by interchanging the architecture's building block position. Our results indicate that image augmentation parameters can help to decrease the validation loss. We have also shown rearrangement of the building blocks reduces the number of parameters, in our case, from 5,689,008 to 3,876,528. © 2023 IEEE.

6.
Life (Basel) ; 13(3)2023 Mar 03.
Article in English | MEDLINE | ID: covidwho-2307366

ABSTRACT

Big-medical-data classification and image detection are crucial tasks in the field of healthcare, as they can assist with diagnosis, treatment planning, and disease monitoring. Logistic regression and YOLOv4 are popular algorithms that can be used for these tasks. However, these techniques have limitations and performance issue with big medical data. In this study, we presented a robust approach for big-medical-data classification and image detection using logistic regression and YOLOv4, respectively. To improve the performance of these algorithms, we proposed the use of advanced parallel k-means pre-processing, a clustering technique that identified patterns and structures in the data. Additionally, we leveraged the acceleration capabilities of a neural engine processor to further enhance the speed and efficiency of our approach. We evaluated our approach on several large medical datasets and showed that it could accurately classify large amounts of medical data and detect medical images. Our results demonstrated that the combination of advanced parallel k-means pre-processing, and the neural engine processor resulted in a significant improvement in the performance of logistic regression and YOLOv4, making them more reliable for use in medical applications. This new approach offers a promising solution for medical data classification and image detection and may have significant implications for the field of healthcare.

7.
Health Care of the Russian Federation ; 66(1):20-26, 2022.
Article in Russian | Scopus | ID: covidwho-2302475

ABSTRACT

Introduction. During the COVID-19 pandemic, there was quarantine, limited contacts, and an increased burden on the healthcare system in the last two years. These problems have led to a rethinking and transformation of patients' readiness for the digitalisation of healthcare. Purpose. To form a patient profile, ready to use digital technologies and artificial intelligence methods in medical care during the COVID-19 pandemic, based on technological competence and digital literacy skills analysis. Material and methods. The sociological survey of patients was used through the remote distribution of links to the Google form on the Internet. The survey consists of 11 blocks, including an assessment of attitudes towards digital technologies and artificial intelligence in healthcare. Results. The average age of respondents was 41.8 ± 0.7 years, mostly female 225 (74%) in the group of patients ready to use electronic wearable devices to monitor and control their health. One hundred thirty-one people (43.1 %) regularly monitor their blood pressure levels. One hundred thirty-seven people (45%) assess their health as good and 133 (43.7%) satisfactory. 256 (84.2%) respondents mostly work full-time. Ones do physical exercises regularly in 34.2% (n = 104) cases and rarely in 48,7% (n = 148). Only 164 respondents (29.4%) consider it possible to use artificial intelligence methods in providing medical care, preventing the development of diseases and promoting a healthy lifestyle, against 256 people (45.9%), the remaining 137 people (24.6%) found it difficult to answer. Women (49.7%) were more often against artificial intelligence methods than men (33.6%). Conclusion. It is necessary to consider the patient's profile characteristics, who is ready to use digital technologies and artificial intelligence methods in medical care when developing effective programs to increase the level and pace of healthcare's digitalisation in the region. © AUTHORS, 2022.

8.
4th International Conference on Advances in Computing, Communication Control and Networking, ICAC3N 2022 ; : 265-270, 2022.
Article in English | Scopus | ID: covidwho-2299439

ABSTRACT

Machine Learning, a part of artificial intelligence which is applied in numerous health-related sector which includes the development of innovative medical procedures, the treatment of chronic diseases and the management of medical data. If a patient can recognize the disease at an early stage from the ease of home, they can start their medication sooner and consult a doctor accordingly for their treatment. This paper attempts to detect various diseases in the healthcare field such as Covid-19 and Pneumonia using Image processing technique with the help of Convolutional Neural Network, and other diseases such as Heart Disease and Diabetes using Random Forest, XGBoost, Support Vector Machine and K-Nearest Neighbour Classifiers. © 2022 IEEE.

9.
4th International Conference on Frontiers Technology of Information and Computer, ICFTIC 2022 ; : 146-149, 2022.
Article in English | Scopus | ID: covidwho-2298397

ABSTRACT

The novel coronavirus is spreading rapidly worldwide, and finding an effective and rapid diagnostic method is apriority. Medical data involves patient privacy, and the centralized collection of large amounts of medical data is impossible. Federated learning is a privacy-preserving machine learning paradigm that can be well applied to smart healthcare by coordinating multiple hospitals to perform deep learning training without transmitting data. This paper demonstrates the feasibility of a federated learning approach for detecting COVID-19 through chest CT images. We propose a lightweight federated learning method that normalizes the local training process by globally averaged feature vectors. In the federated training process, the models' parameters do not need to be transmitted, and the local client only uploads the average of the feature vectors of each class. Clients can choose different local models according to their computing capabilities. We performed a comprehensive evaluation using various deep-learning models on COVID-19 chest CT images. The results show that our approach can effectively reduce the communication load of federated learning while having high accuracy for detecting COVID-19 on chest CT images. © 2022 IEEE.

10.
IEEE Access ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-2297807

ABSTRACT

Convolutional neural networks (CNNs) have gained popularity for Internet-of-Healthcare (IoH) applications such as medical diagnostics. However, new research shows that adversarial attacks with slight imperceptible changes can undermine deep neural network techniques in healthcare. This raises questions regarding the safety of deploying these IoH devices in clinical situations. In this paper, we review the techniques used in fighting against cyber-attacks. Then, we propose to study the robustness of some well-known CNN architectures’belonging to sequential, parallel, and residual families, such as LeNet5, MobileNetV1, VGG16, ResNet50, and InceptionV3 against fast gradient sign method (FGSM) and projected gradient descent (PGD) attacks, in the context of classification of chest radiographs (X-rays) based on the IoH application. Finally, we propose to improve the security of these CNN structures by studying standard and adversarial training. The results show that, among these models, smaller models with lower computational complexity are more secure against hostile threats than larger models that are frequently used in IoH applications. In contrast, we reveal that when these networks are learned adversarially, they can outperform standard trained networks. The experimental results demonstrate that the model performance breakpoint is represented by γ= 0.3 with a maximum loss of accuracy tolerated at 2%. Author

11.
Int J Environ Res Public Health ; 20(7)2023 03 30.
Article in English | MEDLINE | ID: covidwho-2297552

ABSTRACT

Artificial intelligence (AI) has revolutionized numerous industries, including medicine. In recent years, the integration of AI into medical practices has shown great promise in enhancing the accuracy and efficiency of diagnosing diseases, predicting patient outcomes, and personalizing treatment plans. This paper aims at the exploration of the AI-based medicine research using network approach and analysis of existing trends based on PubMed. Our findings are based on the results of PubMed search queries and analysis of the number of papers obtained by the different search queries. Our goal is to explore how are the AI-based methods used in healthcare research, which approaches and techniques are the most popular, and to discuss the potential reasoning behind the obtained results. Using analysis of the co-occurrence network constructed using VOSviewer software, we detected the main clusters of interest in AI-based healthcare research. Then, we proceeded with the thorough analysis of publication activity in various categories of medical AI research, including research on different AI-based methods applied to different types of medical data. We analyzed the results of query processing in the PubMed database over the past 5 years obtained via a specifically designed strategy for generating search queries based on the thorough selection of keywords from different categories of interest. We provide a comprehensive analysis of existing applications of AI-based methods to medical data of different modalities, including the context of various medical fields and specific diseases that carry the greatest danger to the human population.


Subject(s)
Biomedical Research , Medicine , Humans , Artificial Intelligence , Health Services Research , Software
12.
8th IEEE International Symposium on Smart Electronic Systems, iSES 2022 ; : 196-201, 2022.
Article in English | Scopus | ID: covidwho-2277516

ABSTRACT

Internet of Things applications with various sensors in public network are vulnerable to cyber physical attacks. The technology of IoT in smart health monitoring systems popularly known as Internet of Medical Things (IoMT) devices. The rapid growth of remote telemedicine has witnessed in the post COVID era. Data collected over IoMT devices is sensitive and needs security, hence provided by enhancing a light weight encryption module on IoMT device. An authenticated Encryption with Associated Data is employed on the IoMT device to enhance the security to the medical wellness of patient. This paper presents FPGA-based implementation of ASCON-128, a light weight cipher for data encryption. A LUT6 based substitution box (SBOX) is implemented on FPGA as part of cipher permutation block. The proposed architecture takes 1330 number of LUTs, which is 35% less compared to the best existing design. Moreover, the proposed ASCON architecture has improved the throughput by 45% compared to the best existing design. This paper presents the results pertaining to encryption and decryption of medical data as well as normal images. © 2022 IEEE.

13.
Computer Systems Science and Engineering ; 46(2):1789-1809, 2023.
Article in English | Scopus | ID: covidwho-2273017

ABSTRACT

Due to the rapid propagation characteristic of the Coronavirus (COV-ID-19) disease, manual diagnostic methods cannot handle the large number of infected individuals to prevent the spread of infection. Despite, new automated diagnostic methods have been brought on board, particularly methods based on artificial intelligence using different medical data such as X-ray imaging. Thoracic imaging, for example, produces several image types that can be processed and analyzed by machine and deep learning methods. X-ray imaging materials widely exist in most hospitals and health institutes since they are affordable compared to other imaging machines. Through this paper, we propose a novel Convolutional Neural Network (CNN) model (COV2Net) that can detect COVID-19 virus by analyzing the X-ray images of suspected patients. This model is trained on a dataset containing thousands of X-ray images collected from different sources. The model was tested and evaluated on an independent dataset. In order to approve the performance of the proposed model, three CNN models namely MobileNet, Residential Energy Services Network (Res-Net), and Visual Geometry Group 16 (VGG-16) have been implemented using transfer learning technique. This experiment consists of a multi-label classification task based on X-ray images for normal patients, patients infected by COVID-19 virus and other patients infected with pneumonia. This proposed model is empowered with Gradient-weighted Class Activation Mapping (Grad-CAM) and Grad-Cam++ techniques for a visual explanation and methodology debugging goal. The finding results show that the proposed model COV2Net outperforms the state-of-the-art methods. © 2023 CRL Publishing. All rights reserved.

14.
19th IEEE India Council International Conference, INDICON 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2271937

ABSTRACT

A large number of people search about their health related problems on the web. However, the number of sites with qualified and verified people answering their queries is quite low in comparison to the number of questions being put up. The rate of queries being searched on such sites has further increased due to the COVID-19 pandemic. The main reason people find it difficult to find solutions to their queries is due to ineffective identification of semantically similar questions in the medical domain. For most cases, answers to the queries people ask would be present, the only caveat being the question may be present in a different form than the one asked by the particular user. In this research, we propose a Siamese-based BERT model to detect similar questions using a fine-tuning approach. The network is fine-tuned with medical question-answer pairs and then with question-question pairs to get a better question similarity prediction. © 2022 IEEE.

15.
International Conference on Artificial Intelligence and Smart Environment, ICAISE 2022 ; 635 LNNS:1-6, 2023.
Article in English | Scopus | ID: covidwho-2257566

ABSTRACT

Over recent years, the outbreak of Covid-19 has infected more than a billion people. Due to this crisis, the healthcare industry is revolutionizing using the Internet of Health Things (IoHT). As a result, the increasing number of distributed connected objects, their heterogeneity, and mobility have led to a dramatic expansion in the volume of medical data, consequently, a considerable increase in cybercrime. However, the security of the healthcare system must be considered a top priority. According to the policy principles of cybersecurity intrusion detection systems (IDS) are effective and indispensable security tools. We propose in this paper a collaborative distributed fog-based intrusion detection system reinforced by using blockchain to ensure trust and reliability between Fog nodes, and machine learning (ML) approaches with the effective open-source Catboost benefiting from the GPU library to get a record detection and computation time. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

16.
2022 International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2022 ; : 581-588, 2022.
Article in English | Scopus | ID: covidwho-2289143

ABSTRACT

Binary version of the ant lion optimizer (ALO) are suggested and utilized in wrapper-mode to pick the best feature subset for classification. ALO is a recently developed bio-inspired optimization approach that mimics ant lion hunting behavior. Furthermore, ALO balances exploration and exploitation utilizing a unique operator to explore the space of solutions adaptively for the best solution. The difficulties of a plethora of noisy, irrelevant, and misleading features, as well as the capacity to deal with incorrect and inconsistent data in real-world subjects, provide rationale for feature selection to become one of the most important requirements. A difficult machine learning problem is to choose a subset of important characteristics from a vast number of features that characterize a dataset. Choosing the most informative markers and conducting a high-accuracy classification across the data may be a difficult process, especially if the data is complex. The feature selection task is usually expressed as a bio-objective optimization challenge, with the goal of enhancing the performance of the prediction model (data training fitting quality) while decreasing the number of features used. Various evaluation criteria are employed to determine the success of the suggested approach. The findings show that the suggested chaotic binary algorithm can explore the feature space for optimum feature set efficiently. © 2022 IEEE.

17.
10th International Conference on Advanced Cloud and Big Data, CBD 2022 ; : 85-90, 2022.
Article in English | Scopus | ID: covidwho-2288879

ABSTRACT

With more and more people turning to online medical pre-diagnosis systems, it becomes increasingly important to protect patient privacy and enhance the accuracy and efficiency of diagnosis. That is because the ever rapidly growing medical records not only contain a large amount of private information but are often highly unequally distributed (e.g., the number of cases and the rate of increase of covid-19 can be much higher than that of common diseases). However, existing methods are not capable of simultaneously boosting the intensity of privacy protection, and the accuracy and efficiency of diagnosis. In this paper, we propose an online medical pre-diagnosis scheme based on incremental learning vector quantization (called WL-OMPD) to achieve the two objectives at the same time. Specifically, within WL-OMPD, we design an efficient algorithm, Wasserstein-Learning Vector Quantization (W-LVQ), to smartly compress the original medical records into hypothetic samples. Then, we transmit these compressed data to the cloud instead of the original records to offer a more accurate pre-diagnosis. Extensive evaluations of real medical datasets show that the WL-OMPD scheme can improve the imbalance ratio of the data to a certain extent and then the intensity of privacy protection. These results also demonstrate that WL-OMPD substantially boost the accuracy of the classification model and increase diagnostic efficiency at a lower compression rate. © 2022 IEEE.

18.
Soft comput ; : 1-11, 2020 Oct 19.
Article in English | MEDLINE | ID: covidwho-2258017

ABSTRACT

Putting real-time medical data processing applications into practice comes with some challenges such as scalability and performance. Processing medical images from different collaborators is an example of such applications, in which chest X-ray data are processed to extract knowledge. It is not easy to process data and get the required information in real time using central processing techniques when data get very large in size. In this paper, real-time data are filtered and forwarded to the right processing node by using the proposed topic-based hierarchical publish/subscribe messaging middleware in the distributed scalable network of collaborating computation nodes instead of classical approaches of centralized computation. This enables processing streaming medical data in near real time and makes a warning system possible. End users have the capability of filtering/searching. The returned search results can be images (COVID-19 or non-COVID-19) and their meta-data are gender and age. Here, COVID-19 is detected using a novel capsule network-based model from chest X-ray images. This middleware allows for a smaller search space as well as shorter times for obtaining search results.

19.
14th IEEE International Conference on Wireless Communications and Signal Processing, WCSP 2022 ; : 331-335, 2022.
Article in English | Scopus | ID: covidwho-2263465

ABSTRACT

Along with the development of edge computing and Artificial Intelligence (AI), there has been an explosion of health-care system. As COVID-19 spread globally, the pandemic created significant challenges for the global health system. Therefore, we proposed an edge-based framework for risk assessment of communicable disease called CDM-FL. The CDM-FL consists of two modules, the common data model (CDM) and federated learning (FL). The CDM can process and store multi-source heterogeneous data with standardized semantics and schema. This provides more data for model training using medical data globally. The model is deployed on edge nodes that can measure patients' status locally and with low latency. It also keeps patient privacy from being disclosed that patient are more likely to share their medical data. The results based on real-world data show that CDM-FL can help physicians to evaluate the risk of communicable disease as well as save lives during severe epidemic situations. © 2022 IEEE.

20.
Lecture Notes in Networks and Systems ; 401:41-48, 2023.
Article in English | Scopus | ID: covidwho-2238786

ABSTRACT

Since 2020, the world has been impacted badly by the pandemic situation that arose due to the coronavirus. Artificial intelligence plays a crucial role in the healthcare system, specifically identifying symptoms of disease with the help of various machine learning algorithms during the diagnosis stage. The identified symptoms in various diagnostic tests are used to predict the clinical outcome of early detection of diseases, which results in human life saving. Machine learning algorithms have been successfully used in automated interpretation. With the advanced technology of cybersecurity aspects, we can emphasize data protection for better results. Artificial intelligence can enhance the security of medical science data. Furthermore, they improvise cybersecurity techniques with machine learning technologies. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

SELECTION OF CITATIONS
SEARCH DETAIL